

Development of the clinical tool 'NeuroTool' to aid device sizing, ease of angiography, and liquid embolic compatibility

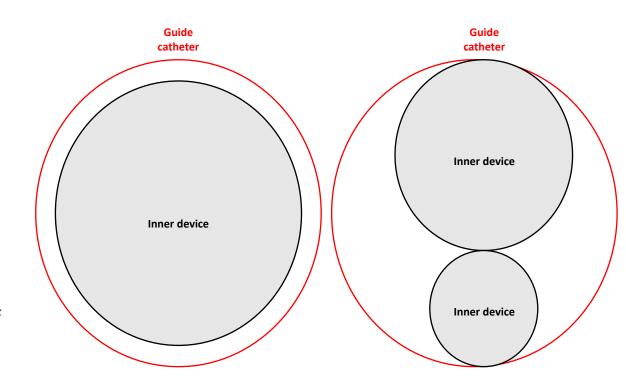
N. Mansoor¹, M. Benger¹, S. Sciacca¹, J. Siddiqui¹, P. Balasundaram¹, N. Kandasamy¹, T. Booth¹, J. Lynch¹ ¹Kings College Hospital, Department of Neuroimaging, London, United Kingdom

ESMINT Congress 2022: Nice, France 7 – 9 September 2022.

Disclosures

No commercial funding for development. The website is self-funded and free to use.

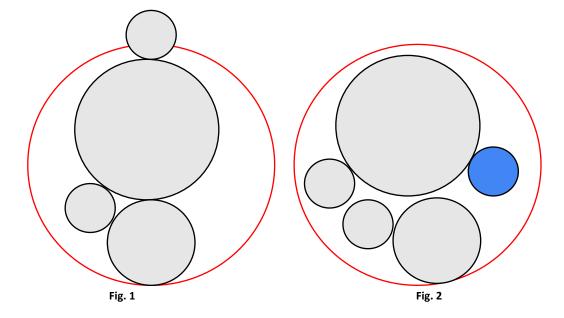
Introduction


- A great variety of neurointerventional devices now exist and practitioners may not be familiar with <u>compatibility</u> especially of newer devices. As procedures become more complex and guide catheters increase in size <u>more devices</u> can often be inserted into a single catheter lumen.
- Predicting in advance whether (i) they will <u>fit</u> and (ii) whether <u>angiography</u> can be performed can be non-trivial.
- If devices are unexpectedly incompatible they must be discarded, increasing **<u>cost</u>** of procedures.
- If 3 or more devices are used in a single lumen the problem is mathematically <u>complex</u> (a problem termed 'circle packing') and compatibility cannot be calculated by summation of the diameters.
- There is (was) no available method to predict in advance whether 3 or more devices will fit in a single lumen other than trial and error
- Aims: Produce a model to predict device compatibility in terms of diameter, length, space for cerebral angiography, and liquid embolic usage.

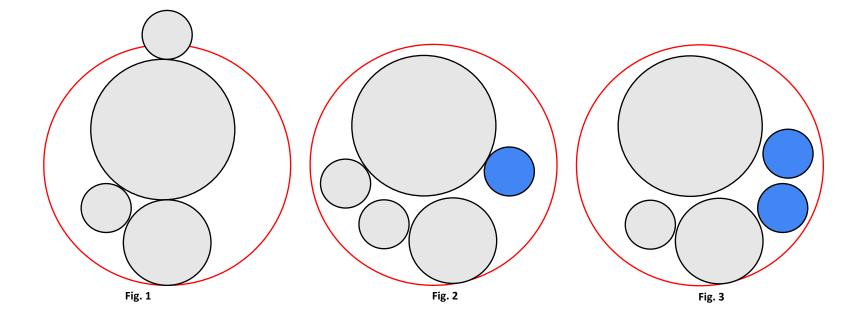
Methodology

- A <u>search</u> was made of all available commercial catalogues for devices made for interventional neuroradiology (catheters, balloons, stents etc.)
- A large <u>database</u> was compiled consisting of manufacturer provided and empirically observed data: on sizes, lengths, compatibility, DMSO compatibility.
- A computational <u>model</u> employing the *Matousek-Sharir-Welzl* algorithm was used to predict device fitting.
- An <u>app</u> was created and uploaded online to be used by clinicians.

1 or 2 or devices


- Whether 1 2 devices will fit within another is a straightforward calculation.
- The only catch is that some catheters, e.g. Sofia Plus, require a larger lumen than their outer diameter would suggest (e.g. due to ovalisation). This value has to be used instead of the true outer diameter.

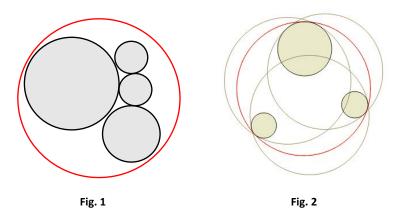
1 device

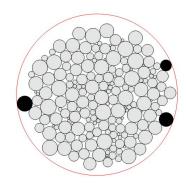

2 devices

3 or more devices

- When 3 or more devices are inserted in to a larger device there is **no geometric**
- formula to determine whether or not they will fit. There are different ways that the devices can sit beside each other: in some configurations the devices will fit in some they will not. This seems obvious but requires an algorithm to find an efficient pack.

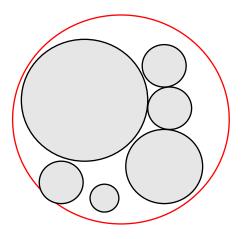
3 or more devices


• This configuration will change when further devices are added


3 or more devices

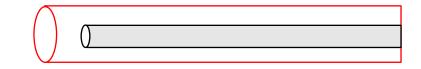
- The branch of mathematics generally known as "circle packing" is concerned with the geometry and combinatorics of packings of arbitrarily-sized circles
- In this instance an algorithm is needed to calculate the smallest diameter multiple arbitrarily sized circles can be 'packed' in to (Fig 1).
- First the circles have to be packed efficiently together.
- When arranging circles the enclosing circle only changes when you move a circle that is tangent to the internal circles. The set of tangent circles is called the basis for the enclosing circle (Fig 2).
- A circle *a* encloses a circle *b* if and only if a's radius is **greater than or equal to b's radius** plus the distance between the two circles' centres:

 $r_a \geq r_b + \sqrt{(x_a-x_b)^2+(y_a-y_b)^2}$


- Using the Matoušek-Sharir-Welzl we iterate over the circles to calculate the basis until all the circles are covered (Fig 3).
- The algorithm is explained in detail here: <u>https://observablehq.com/@lretondaro/msw-algorithm</u>

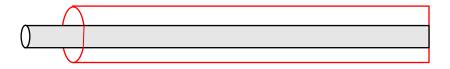
Example

- Newer guide catheters such as the BMX 96 have <u>larger inner diameters</u> and can therefore fit more devices inside.
- The scenario presented opposite is an unlikely one but <u>all of these fit</u> within the BMX catheter (overleaf).
- It would however be impossible to predict this in advance non-algorithmically.

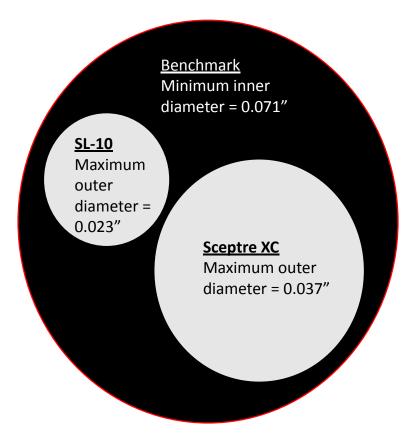


BW	X 96 (Catheter, Penumbra)		
	OD: 0.1090" (8.3 Fr). ID: 0.0960". 80 / 90 / 100		
	Access (optional) Fit Remove Info		
•	Scepter XC 4 mm (Balloon, MicroVention)		
	OD: 0.0370" (2.8 Fr). ID: 0.0165". 150 c		
	Fit - Remove Info -		
-	Scepter XC 4 mm (Balloon, MicroVention)		
	OD: 0.0370" (2.8 Fr). ID: 0.0165". 150 c		
	Fit ▼ Remove Info ▼		
-	Echelon 10 (Microcatheter, Medtronic)		
	OD: 0.0280" (2.1 Fr). ID: 0.0170". 150 c		
	Fit ▼ Remove Info ▼		
•	Echelon 10 (Microcatheter, Medtronic)		
	OD: 0.0280" (2.1 Fr). ID: 0.0170". 150 c		
	Fit ▼ Remove Info ▼		
•	Echelon 10 (Microcatheter, Medtronic)		
	OD: 0.0280" (2.1 Fr). ID: 0.0170". 150 c		
	Fit ▼ Remove Info ▼		

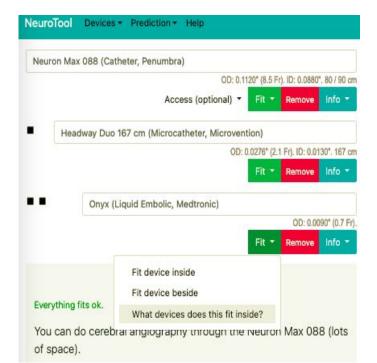
Length


- It must also be considered if the inner device extends beyond the <u>length</u> of the outer device
- Otherwise the inner device will not extend beyond the outer and effectively be useless).

NeuroT	ool Devices - Prediction - Help	
Bench	mark 071 (Catheter, Penumbra)	8
	OD: 0.0790" (6.0 Fr). ID: 0.0710'	. 95 / 105 / 115 cm
	Access (optional) 🝷 Fit 🝷 Ren	nove Info -
•	Sofia 5F (Catheter, MicroVention)	8
	OD: 0.0680" (5.2 Fr). ID: 0.0	550". 115 / 125 cm
	Fit 👻 Ren	nove Info 🔻


Everything fits ok.

Avoid the following combinations of lengths: Benchmark 071 115 cm and Sofia 5F 115 cm.


Angiography strength

• The <u>angiography strength</u> is determined by the space left after summing the areas of the inner devices from the outer devices - the black area in the example opposite.

DMSO

 Finally the database is queried as to whether the devices are <u>DMSO</u> compatible

Fit Inside

×

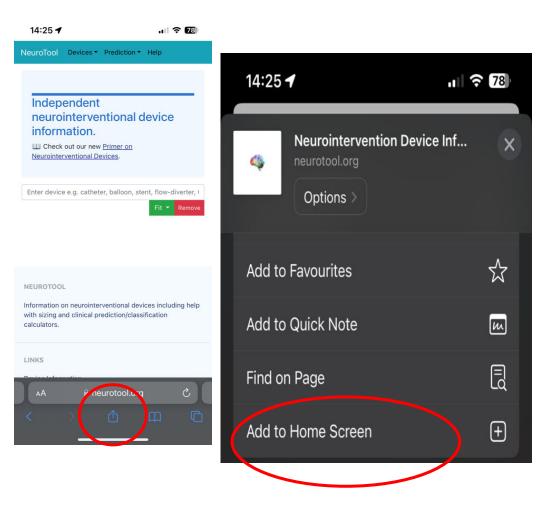
The Onyx will fit inside (0 items):

Name	Туре	Minimum inner diameter (inches)	Maximum outer diameter (inches)	Lengths
HyperForm 3 mm (Medtronic)	Balloon	0.011	0.036	150 cm
HyperForm 4 mm (Medtronic)	Balloon	0.011	0.036	150 cm
HyperForm 7 mm (Medtronic)	Balloon	0.011	0.039	150 cm
HyperGlide 3mm (Medtronic)	Balloon	0.011	0.037	150 cm
HyperGlide 4mm (Medtronic)	Balloon	0.011	0.037	150 cm
				100

Examples

uron Max 088 (Catheter, Penumbra)	Neuron Max 088 (Catheter, Penumbra)		
OD: 0.1120" (8.5 Fr). ID: 0.0880". 80 / 90 cm	OD: 0.1120" (8.5 Fr). ID: 0.0880". 80 / 90 cm		
Access (optional) - Fit - Remove Info -	Access (optional) - Fit - Remove Info -		
Navien 072 (Catheter, Medtronic)	Navien 072 (Catheter, Medtronic) OD: 0.0840" (6.4 Fr). ID: 0.0720". 95 / 105 / 115 / 125 / 130 cr		
OD: 0.0840" (6.4 Fr). ID: 0.0720". 95 / 105 / 115 / 125 / 130 cm			
Fit - Remove Info -	Fit 🕋 Remove Info 🔫		
Excelsior SL 10 (Microcatheter, Stryker)	Echelon 10 (Microcatheter, Medtronic)		
OD: 0.0320" (2.4 Fr). ID: 0.0165". 150 cm	OD: 0.0280" (2.1 Fr). ID: 0.0170". 150 cm		
Fit - Remove Info -	Fit - Remove Info -		
Phenom 027 (Microcatheter, Medtronic)	Phenom 027 (Microcatheter, Medtronic)		
OD: 0.0410" (3.1 Fr). ID: 0.0270". 150 cm	OD: 0.0410" (3.1 Fr). ID: 0.0270". 150 cm		
Fit - Remove Info -	Fit - Remove Info -		
Pipeline Vantage with Shield 2.5 to 3.5 mm (Stent, Medtroni	Pipeline Vantage with Shield 2.5 to 3.5 mm (Stent, Medtroni		
OD: 0.0200" (1.5 Fr).	OD: 0.0200" (1.5 Fr).		
Fit * Remove Info *	Fit = Remove Info =		
e combination of Phenom 027 and Excelsior SL 10 does not fit in to Navien	Everything fits ok.		
2.	The best device for cerebral angiography is the Neuron Max 088		
ou can do cerebral angiography through the Neuron Max 088	(some space). Angiography strength through the remaining		

catheters is as follows: Navien 072 (not much space).


(some space).

Examples

Offline usage

 On iPhones the app can be saved on to the homescreen for offline usage.

Conclusions

• A tool was developed to aid in decisions regarding device:

O <u>sizing,</u>

- O ease of angiography, and
- O liquid embolic compatibility.
- This is currently the <u>only</u> model that can accurately predict whether 3 or more devices will fit inside the single lumen of a larger device.
- The tool and source code are freely available at

www.neurotool.org